Aluminum Magnesium Boride BAM AlMgB14 Powder

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



About AlMgB14 alloy powder:
Aluminum boride or Al3Mg3B56, commonly known as BAM, is a compound of aluminum, magnesium, and boron. Although its nominal formula is AlMgB14, its chemical composition is closer to Al0.75Mg0.75B14. It is a highly wear-resistant ceramic alloy with an extremely low sliding friction coefficient, reaching a record value of 0.04 in the unlubricated AlMgB14-TiB2 composite material, and a record value of 0.02 in the lubricated AlMgB14-TiB2 composite material. BAM was first reported in 1970. It has an orthogonal structure and each unit cell has four icosahedral B12 units. The thermal expansion coefficient of this super hard material is comparable to other widely used materials such as steel and concrete. Nanometer is a trusted global Aluminum-Magnesium Boride BAM AlMgB14 Powder supplierFeel free to send an inquiry about the latest price of AlMgB14 at any time.
 
How is AlMgB14 alloy Powder Produced?
AlMgB14 aluminum magnesium boride material has a better anti-wear property than diamond and is a new type of anti-degradation material. AlMgB14 has a density of only 2.66 g/cm3, which is much lower than other superhard materials (such as diamond and cubic boron nitride), and does not react with carbon steel, stainless steel, or titanium alloy at temperatures up to 1300 °C, and has high thermal stability.
AlMgB14 aluminum magnesium boride has a much higher conductivity than other conventional super hard materials and is basically equivalent to the conductivity of poly-silicon. The most attractive aspect of AlMgB14 is its low price, which is 5 to 10 times lower than diamond and cubic boron nitride. These excellent properties make AlMgB14 not only wearable,
Traditional fields such as protective coatings and cutting equipment manufacturing can also be widely used in advanced scientific fields such as thermoelectric devices, photodetectors, neutron masks, micro machines, and aerospace key components.
 
Applications of AlMgB14 alloy Powder:
BAM is commercially available, and research is being conducted for more potential applications. For example, the pistons, seals, and vanes on the pump can be coated with BAM or BAM + TiB2 to reduce friction between parts and increase wear resistance. The reduction in friction will reduce energy consumption. BAM can also be coated on cutting tools. The reduced friction will reduce the force required to cut the object, extend tool life, and may allow an increase in cutting speed. It has been found that only 2-3 microns thick coating can increase efficiency and reduce cutting tool wear.
Ternary Boride AlMgB14 alloy powder is one of the research hotspots in the field of superhard materials in the world. It has attracted widespread attention from scholars at home and abroad in recent years. Unlike traditional metastable superhard materials such as diamond and cubic boron nitride, AlMgB14 superhard materials are equilibrium materials with high hardness, low density, low coefficient of friction, high thermal stability, and good thermoelectric properties.

Properties and application of AlMgB14 alloy powder:
AlMgB14 aluminum magnesium boride material has a better anti-wear property than diamond and is a new type of anti-degradation material. AlMgB14 has a density of only 2.66 g/cm3, which is much lower than other superhard materials (such as diamond and cubic boron nitride), and does not react with carbon steel, stainless steel, or titanium alloy at temperatures up to 1300 °C, and has high thermal stability.
AlMgB14 aluminum magnesium boride has a much higher conductivity than other conventional superhard materials and is basically equivalent to the conductivity of polysilicon. The most attractive aspect of AlMgB14 is its low price, which is 5 to 10 times lower than diamond and cubic boron nitride. These excellent properties make AlMgB14 not only wearable,
Traditional fields such as protective coatings and cutting equipment manufacturing can also be widely used in advanced scientific fields such as thermoelectric devices, photodetectors, neutron masks, micromachines, and aerospace key components. 

Storage Condition of AlMgB14 Aluminum Magnesium Boride Powder:
The damp reunion will affect AlMgB14 aluminum magnesium boride dispersion performance and using effects, therefore, AlMgB14 aluminum magnesium boride powder should be sealed in vacuum packing and stored in the cool and dry room, the AlMgB14 aluminum magnesium boride can not be exposure to air. In addition, the AlMgB14 powder should be avoided under stress.

Packing & Shipping of AlMgB14 Aluminum Magnesium Boride Powder:
We have many different kinds of packing which depend on the AlMgB14 aluminum magnesium boride powder quantity.
AlMgB14 aluminum magnesium boride powder packing:vacuum packing, 100g, 500g or 1kg/bag, 25kg/barrel, or as your request.
AlMgB14 aluminum magnesium boride powder shipping: could be shipped out by sea, by air, by express, as soon as possible once payment receipt.
Aluminum Magnesium Boride BAM AlMgB14 Powder插图

Aluminum Magnesium Boride Properties

Other NamesAlMgB14 Powder
CAS No.N/A
Compound FormulaAlMgB14 
Molecular Weight202.64
AppearanceGray to Black Powder
Melting PointN/A
Boiling PointN/A
DensityN/A
Solubility in H2ON/A
Thermal Expansion9×10-6 K-1
Vickers HardnessN/A
Young’s ModulusN/A
  
  

Aluminum Magnesium Boride Health & Safety Information

Signal WordWarning
Hazard StatementsH302
Hazard CodesXi
Risk CodesN/A
Safety StatementsN/A
Transport InformationNONH for all modes of transport
Inquiry us